Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem.

Identifieur interne : 000116 ( Main/Exploration ); précédent : 000115; suivant : 000117

Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem.

Auteurs : Eneas Aguirre-Von-Wobeser [Mexique] ; Jorge Rocha-Estrada [Mexique] ; Lori R. Shapiro [États-Unis] ; Mayra De La Torre [Mexique]

Source :

RBID : pubmed:30571782

Descripteurs français

English descriptors

Abstract

Milpas are rain-fed agroecosystems involving domesticated, semi-domesticated and tolerated plant species that combine maize with a large variety of other crop, tree or shrub species. Milpas are low input and low-tillage, yet highly productive agroecosystems, which have been maintained over millennia in indigenous communities in Mexico and other countries in Central America. Thus, milpas may retain ancient plant-microorganisms interactions, which could have been lost in modern high-tillage monocultures with large agrochemical input. In this work, we performed high-throughput 16S ribosomal DNA sequencing of soil adjacent to maize roots and bulk soil sampled at 30 cm from the base of the plants. We found that the bacterial communities of maize root soil had a lower alpha diversity, suggesting selection of microorganisms by maize-roots from the bulk-soil community. Beta diversity analysis confirmed that these environments harbor two distinct microbial communities; differences were driven by members of phyla Verrucomicrobia and Actinobacteria, as well as the order Burkholderiales (Betaproteobacteria), all of which had higher relative abundance in soil adjacent to the roots. Numerous studies have shown the influence of maize plants on bacterial communities found in soil attached tightly to the roots; here we further show that the influence of maize roots at milpas on bacterial communities is detectable even in plant-free soil collected nearby. We propose that members of Verrucomicrobia and other phyla found in the rhizosphere may establish beneficial plant-microbe interactions with maize roots in milpas, and propose to address their cultivation for future studies on ecology and potential use.

DOI: 10.1371/journal.pone.0208852
PubMed: 30571782
PubMed Central: PMC6301694


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem.</title>
<author>
<name sortKey="Aguirre Von Wobeser, Eneas" sort="Aguirre Von Wobeser, Eneas" uniqKey="Aguirre Von Wobeser E" first="Eneas" last="Aguirre-Von-Wobeser">Eneas Aguirre-Von-Wobeser</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cátedras CONACyT, Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Cátedras CONACyT, Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo</wicri:regionArea>
<wicri:noRegion>Hidalgo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rocha Estrada, Jorge" sort="Rocha Estrada, Jorge" uniqKey="Rocha Estrada J" first="Jorge" last="Rocha-Estrada">Jorge Rocha-Estrada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cátedras CONACyT, Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Cátedras CONACyT, Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo</wicri:regionArea>
<wicri:noRegion>Hidalgo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shapiro, Lori R" sort="Shapiro, Lori R" uniqKey="Shapiro L" first="Lori R" last="Shapiro">Lori R. Shapiro</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De La Torre, Mayra" sort="De La Torre, Mayra" uniqKey="De La Torre M" first="Mayra" last="De La Torre">Mayra De La Torre</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo</wicri:regionArea>
<wicri:noRegion>Hidalgo</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30571782</idno>
<idno type="pmid">30571782</idno>
<idno type="doi">10.1371/journal.pone.0208852</idno>
<idno type="pmc">PMC6301694</idno>
<idno type="wicri:Area/Main/Corpus">000083</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000083</idno>
<idno type="wicri:Area/Main/Curation">000083</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000083</idno>
<idno type="wicri:Area/Main/Exploration">000083</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem.</title>
<author>
<name sortKey="Aguirre Von Wobeser, Eneas" sort="Aguirre Von Wobeser, Eneas" uniqKey="Aguirre Von Wobeser E" first="Eneas" last="Aguirre-Von-Wobeser">Eneas Aguirre-Von-Wobeser</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cátedras CONACyT, Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Cátedras CONACyT, Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo</wicri:regionArea>
<wicri:noRegion>Hidalgo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rocha Estrada, Jorge" sort="Rocha Estrada, Jorge" uniqKey="Rocha Estrada J" first="Jorge" last="Rocha-Estrada">Jorge Rocha-Estrada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cátedras CONACyT, Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Cátedras CONACyT, Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo</wicri:regionArea>
<wicri:noRegion>Hidalgo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shapiro, Lori R" sort="Shapiro, Lori R" uniqKey="Shapiro L" first="Lori R" last="Shapiro">Lori R. Shapiro</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De La Torre, Mayra" sort="De La Torre, Mayra" uniqKey="De La Torre M" first="Mayra" last="De La Torre">Mayra De La Torre</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo</wicri:regionArea>
<wicri:noRegion>Hidalgo</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actinobacteria (classification)</term>
<term>Actinobacteria (genetics)</term>
<term>Actinobacteria (growth & development)</term>
<term>Burkholderiaceae (classification)</term>
<term>Burkholderiaceae (genetics)</term>
<term>Burkholderiaceae (growth & development)</term>
<term>Crop Production (MeSH)</term>
<term>Microbial Consortia (physiology)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (microbiology)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Verrucomicrobia (classification)</term>
<term>Verrucomicrobia (genetics)</term>
<term>Verrucomicrobia (growth & development)</term>
<term>Zea mays (growth & development)</term>
<term>Zea mays (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Actinobacteria (classification)</term>
<term>Actinobacteria (croissance et développement)</term>
<term>Actinobacteria (génétique)</term>
<term>Burkholderiaceae (classification)</term>
<term>Burkholderiaceae (croissance et développement)</term>
<term>Burkholderiaceae (génétique)</term>
<term>Consortiums microbiens (physiologie)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Production végétale (MeSH)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (microbiologie)</term>
<term>Verrucomicrobia (classification)</term>
<term>Verrucomicrobia (croissance et développement)</term>
<term>Verrucomicrobia (génétique)</term>
<term>Zea mays (croissance et développement)</term>
<term>Zea mays (microbiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Actinobacteria</term>
<term>Burkholderiaceae</term>
<term>Verrucomicrobia</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Actinobacteria</term>
<term>Burkholderiaceae</term>
<term>Racines de plante</term>
<term>Verrucomicrobia</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Actinobacteria</term>
<term>Burkholderiaceae</term>
<term>Verrucomicrobia</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Actinobacteria</term>
<term>Burkholderiaceae</term>
<term>Plant Roots</term>
<term>Verrucomicrobia</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Actinobacteria</term>
<term>Burkholderiaceae</term>
<term>Verrucomicrobia</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Racines de plante</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Consortiums microbiens</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Microbial Consortia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crop Production</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Actinobacteria</term>
<term>Burkholderiaceae</term>
<term>Microbiologie du sol</term>
<term>Production végétale</term>
<term>Verrucomicrobia</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Milpas are rain-fed agroecosystems involving domesticated, semi-domesticated and tolerated plant species that combine maize with a large variety of other crop, tree or shrub species. Milpas are low input and low-tillage, yet highly productive agroecosystems, which have been maintained over millennia in indigenous communities in Mexico and other countries in Central America. Thus, milpas may retain ancient plant-microorganisms interactions, which could have been lost in modern high-tillage monocultures with large agrochemical input. In this work, we performed high-throughput 16S ribosomal DNA sequencing of soil adjacent to maize roots and bulk soil sampled at 30 cm from the base of the plants. We found that the bacterial communities of maize root soil had a lower alpha diversity, suggesting selection of microorganisms by maize-roots from the bulk-soil community. Beta diversity analysis confirmed that these environments harbor two distinct microbial communities; differences were driven by members of phyla Verrucomicrobia and Actinobacteria, as well as the order Burkholderiales (Betaproteobacteria), all of which had higher relative abundance in soil adjacent to the roots. Numerous studies have shown the influence of maize plants on bacterial communities found in soil attached tightly to the roots; here we further show that the influence of maize roots at milpas on bacterial communities is detectable even in plant-free soil collected nearby. We propose that members of Verrucomicrobia and other phyla found in the rhizosphere may establish beneficial plant-microbe interactions with maize roots in milpas, and propose to address their cultivation for future studies on ecology and potential use.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30571782</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>05</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem.</ArticleTitle>
<Pagination>
<MedlinePgn>e0208852</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0208852</ELocationID>
<Abstract>
<AbstractText>Milpas are rain-fed agroecosystems involving domesticated, semi-domesticated and tolerated plant species that combine maize with a large variety of other crop, tree or shrub species. Milpas are low input and low-tillage, yet highly productive agroecosystems, which have been maintained over millennia in indigenous communities in Mexico and other countries in Central America. Thus, milpas may retain ancient plant-microorganisms interactions, which could have been lost in modern high-tillage monocultures with large agrochemical input. In this work, we performed high-throughput 16S ribosomal DNA sequencing of soil adjacent to maize roots and bulk soil sampled at 30 cm from the base of the plants. We found that the bacterial communities of maize root soil had a lower alpha diversity, suggesting selection of microorganisms by maize-roots from the bulk-soil community. Beta diversity analysis confirmed that these environments harbor two distinct microbial communities; differences were driven by members of phyla Verrucomicrobia and Actinobacteria, as well as the order Burkholderiales (Betaproteobacteria), all of which had higher relative abundance in soil adjacent to the roots. Numerous studies have shown the influence of maize plants on bacterial communities found in soil attached tightly to the roots; here we further show that the influence of maize roots at milpas on bacterial communities is detectable even in plant-free soil collected nearby. We propose that members of Verrucomicrobia and other phyla found in the rhizosphere may establish beneficial plant-microbe interactions with maize roots in milpas, and propose to address their cultivation for future studies on ecology and potential use.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aguirre-von-Wobeser</LastName>
<ForeName>Eneas</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000-0002-5604-0525</Identifier>
<AffiliationInfo>
<Affiliation>Cátedras CONACyT, Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo, Mexico.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rocha-Estrada</LastName>
<ForeName>Jorge</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Cátedras CONACyT, Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo, Mexico.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shapiro</LastName>
<ForeName>Lori R</ForeName>
<Initials>LR</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de la Torre</LastName>
<ForeName>Mayra</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo, Mexico.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>12</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D039903" MajorTopicYN="Y">Actinobacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042521" MajorTopicYN="Y">Burkholderiaceae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069599" MajorTopicYN="N">Crop Production</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059013" MajorTopicYN="N">Microbial Consortia</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061327" MajorTopicYN="Y">Verrucomicrobia</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>08</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30571782</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0208852</ArticleId>
<ArticleId IdType="pii">PONE-D-18-25171</ArticleId>
<ArticleId IdType="pmc">PMC6301694</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 Nov;78(2):297-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21692818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Jul 18;8:1325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28769896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Sep;80(17):5282-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24951788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2015 Mar;17(3):678-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24803003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Soil Biol Biochem. 2011 Jul;43(7):1450-1455</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22267877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2017 Nov 13;18(1):215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29132403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Mar;81(6):2244-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25616793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Feb;75(4):915-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19088312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Jun;193(11):2902-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Basic Microbiol. 2011 Feb;51(1):15-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21259285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2450-E2459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28275097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jul 12;7:990</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7368-7373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29941552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Dec 08;9(12):e114657</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25486121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):949-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15640353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Apr;30(4):772-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Jul;13(7):581-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27214047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2017 May 1;41(3):392-416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28521336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2013 Sep;37(5):634-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23790204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2003 Jul;53(Pt 4):1155-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23193283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Mar;72(3):1719-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16517615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Aug;17(8):478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22564542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Sep;77(17):6295-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Aug;75(15):5111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 Sep;2(9):901-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18528413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2016 Apr;90(6):635-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26085172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Nov 3;7(1):15019</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29101364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 May;193(9):2367-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21398538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Nov 1;22(21):2688-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2011 Feb;5(2):169-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20827291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 May;7(5):e1002064</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21589895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1088-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21189301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2015 Aug;65(8):2410-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25899503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2015 Sep;108(3):741-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26184407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>3 Biotech. 2017 Jun;7(2):102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28560641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Jan;7(1):37-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22791236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Apr;68(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Mar 30;7:373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27066028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Nov 1;342(6158):621-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24179225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23576752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Dec 18;8:2478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29326663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Jul;26(7):1641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377059</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Mexique</li>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="Mexique">
<noRegion>
<name sortKey="Aguirre Von Wobeser, Eneas" sort="Aguirre Von Wobeser, Eneas" uniqKey="Aguirre Von Wobeser E" first="Eneas" last="Aguirre-Von-Wobeser">Eneas Aguirre-Von-Wobeser</name>
</noRegion>
<name sortKey="De La Torre, Mayra" sort="De La Torre, Mayra" uniqKey="De La Torre M" first="Mayra" last="De La Torre">Mayra De La Torre</name>
<name sortKey="Rocha Estrada, Jorge" sort="Rocha Estrada, Jorge" uniqKey="Rocha Estrada J" first="Jorge" last="Rocha-Estrada">Jorge Rocha-Estrada</name>
</country>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Shapiro, Lori R" sort="Shapiro, Lori R" uniqKey="Shapiro L" first="Lori R" last="Shapiro">Lori R. Shapiro</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000116 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000116 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30571782
   |texte=   Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30571782" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020